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Talk Plan:

• Setting the Stage—Challenges in Accurate Measurements

• The SI and the role for National Measurement Institute (NMIs)

• NIST Capabilities, by lab
• POWR
• SIRCUS
• AAMM
• HIP
• CBS3

• International Inter-comparisons and Challenges

• Closing Remarks

Principles for Robust, On-orbit Uncertainties Traceable to the SI
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Motivation:
Stemming, say, from the NRC 
Decadal Survey Report
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Reflected Solar
IR Thermal Emission
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Solar irradiance
≅ 1361 W/m2

Earth Radiation Budget:
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Earth Radiation Budget: affected by
- Atmospheric constituents
- Earth’s albedo
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Keeling curve (atmospheric carbon
dioxide fraction):
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Keeling curve as an example– more sure tracking of changes.
What do good measurements get us? 
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Test for human influence

Test climate models

Faster time to characterization of climate change, forcings, causes, 
etc.  

What do good measurements get us? 
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Traceability—Foundation for Accurate Measurements

Property of the result of a measurement or the value of a 
standard whereby it can be related to stated references, 
usually national or international standards, through an 
unbroken chain of comparisons all having stated 
uncertainties (VIM, 6.10) 

Based on the “SI” 
International System of Units

and defensible!



NIST facilities/capabilities
Presented: 
POWR Primary Optical Watt Radiometer
SIRCUS Spectral Irradiance & Radiance Calibration

using Uniform Sources
AAMM Aperture Area Measuring Machine
HIP Hyperspectral Imaging Projector
CBS3 Controlled-Background System for 

Spectroradiometry and Spectrophotometry

Not presented:
LBIR Low-Background Infrared Radiometry
RSL Remote-Sensing Laboratory
R2T Radiance & Radiance Temp., replacing

FASCAL, FASCAL2, Heat Flux Facility
STARR BRDF facility
IR BRDF Infrared BRDF Facility
CHILR For measuring IR reflectance
TXR Thermal transfer radiometer
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Example of a short traceability chain:
Detector-based temperature realization in SIRCUS
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Liquid
He 

at 2K

Liquid
Nitrogen

Jeanne Houston
Joe Rice

• POWR provides 
optical power to 
0.01% (k = 2)

NIST Optical Measurements are Traceable 
to the Electrical Watt through

the Primary Optical Watt Radiometer (POWR)
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Spectral Irradiance and Radiance Responsivity Calibrations 
using Uniform Sources (SIRCUS)

Monitor Detector 
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with the aid of SIRCUS

Keith Lykke
Steve Brown
George Eppeldauer
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…and to the Meter through Aperture Area Measurements Performed by 
the Absolute Aperture Area Measurement Machine…
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Aperture area to better than 0.01%
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Toni Litorja
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Scene viewed by a 
typical optical sensor 
instrument

Scene viewed by an
Imaging instrument

In practice

Consider the complexity of real-world scenes:

Hyperspectral Imaging Projector (HIP)



Digital Micromirror Device (DMD)

• An array of MEMS micromirror elements

• Commercially available:
• 1024 x 768 elements  
• Aluminum mirrors
• 13.7 micron pitch

• For visible to 2500 nm applications:
commercially available hardware

• For longer wavelength infrared 
developments we are using DMDs where 
the glass window is replaced by a ZnSe 
window.

• Control algorithms are being written 
using everyday control software for 
everyday hardware interfaces and 
operating systems.



Digital Light Processing (DLP) Projectors

Reference: www.dlp.com

http://www.dlp.com/


Hyperspectral Image Projector (HIP) Prototype
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How the DMD is used to create an arbitrarily programmable spectrum
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Example image as projected by the prototype HIP
onto a white screen and taken using a digital camera



Relation of Different Components of the Effort Aimed at 
Establishing of the Thermal and Far IR Spectral Radiance Scales

Support includes Spectral Radiance Realization (1), Validation (2) , and Transfer (3) Steps. 
The Transfer Step (not shown) includes calibration of the CLARREO Transfer Standard BB 
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Optical Property Metrology Modes of CBS3
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Radiance Temperature Modes of CBS3



CBS3 System Lab Space
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Validity of NMI measurements: uncertainties stem from
- Intercomparisons between NMIs (and other entities)
- NMI participation in the open scientific literature
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Are we there yet?
No, but we are getting closer (e.g., it is desirable to be able to measure a 200 ppm
decadal variability of TSI).
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Closing Remarks
Robust Uncertainties
• Documented
• Defending measurements’ validity
• Assigning quantitative significances to measurements
• In principle, helpful for inter-calibration analysis
• Can be amended in retrospect (if documented!)
For On-orbit Measurements
• On-board calibration systems
• Multiple & redundant methods of indefinite instrument  

calibration, validation
• “Self-calibrating instruments” concept

NIST is willing to work, along with the wider scientific 
community, to support measurements relevant to climate.
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