CLARREO Pathfinder Inter-Calibration Data System: Requirements, Concepts, and Status

Chris Currey, NASA LaRC, Hampton, VA

Outline:

- Inter-Calibration Data System Requirements
- Data Management Plan
- Inter-Project Agreement with ESDIS
- Data System Hardware Status
- Multi-instrument Inter-calibration (MIIC) System
- Issues and Challenges
MIIC IC Data Management Requirements

- Level 2 Data Requirements are Specified in the SMRD
 - SMRD SCI.24040 ESDIS Compliance
 - Adhere to NASA Earth Science Data and Information Policy specified at http://science.nasa.gov/earth-science/earth-science-data/data-information-policy/ - open access to data
 - NASA Earth science data systems to adhere to ESDIS standards and practices, http://earthdata.nasa.gov/data/standards-and-references - produce data products in compliant file format (HDF5, netCDF4)
 - Data Latency
 - CPF IC L1B: 1 month after measurement
 - L4: 6 months after measurement
 - VIIRS and CERES input TBD
 - Data Release (available to outside users)
 - CPF IC L1B: L+10 mos. (Beta), L+20 mos. (Ed1)
 - L4: L+12 mos. (Beta), L+24 mos. (Ed1)
CPF Data Management Planning Documents

- **Draft Data Management Plan CPF-04-014 Draft**
 - Implementation plan for CPF Science Segment – addresses life cycle of science data product generation: software development, data systems, science operations, data assessment, …

- **Inter-Project Agreement (IPA) with ESDIS**
 - Define DAAC and Project responsibilities to archive and distribute data products to the science community
 - Need draft IPA by SRR
 - Jeff Walter (ASDC) leading the effort
 - Help explain “ESDIS compliance” requirements
New hardware procured and installed for small cluster and shared storage (GPFS)
Need to interface to MIIC system
Inter-Calibration New Data System Hardware

- **Excellent ASDC support**: Dave Johnson, Chris Jones, Andrei Vakhnin, Chris Harris

- New CPF data system being configured and tested
 - Head node
 - 6 compute nodes, 16 Intel cores/node
 - Local GPFS storage (185 TB, RAID6)
 - MIIC blades (3)

- Benchmark results
 - (48 jobs, 512KB bsz)
 - GPFS_local /Pathfinder RAID6
 - ext4_local /data2 RAID5
 - GPFS_remote /data3_3500 RAID6
 - ibm_seq_write 2.7 GB/s 1.0 GB/s (per RAID) 59 MB/s
 - ibm_seq_read 1.8 GB/s cache biased 1.8 GB/s
 - iozone
 - gpfper

- HP (SGI) meeting 1/10 to verify system configuration and perform system tuning
- Univa Grid Engine installed, runs on top of GPFS
- Run multiple processes (1-16 per node) using UGE or MPI; only 3 compute nodes configured!
Multi-Instrument Inter-Calibration (MIIC) System

- Distributed system that uses OPeNDAP to access remote data sets
- Event Prediction, Data Acquisition, and Data Analysis web services
- CPF Project to determine how best to leverage the MIIC system
- Lead software architect: Aron Bartle, Mechdyne
- Demo capabilities w/ CERES NPP FM5 vs. Aqua FM3 inter-comparison

Multi-Instrument Inter-Calibration (MIIC) software development funded by NASA ROSES ACCESS 2011 and 2013
MIIC Event Prediction

Figure 1. CERES NPP vs. Aqua Event prediction: MIIC (left) vs. SPIE 2014 (right), January 5, 2013; MIIC Event Prediction settings: Δvza=5°, Δraz=180°, Δtime= 24 sec., and 0-75 sza; footprints are averaged within 1°×1° geographic grid cells.
MIIC Data Acquisition

Multi Instrument Inter-Calibration

Current User: Jon

Home > Plans > Copy Of Copy Of Copy Of EP-DAY-TEST [Events, Analysis]

Current State: ANALYSIS_COMPLETED

Target Variables
- Clear_Footprint_Area
- Clear_area_percent_coverage_at_subpixel_resolution
- MIIC_standard_latitude
- MIIC_standard_longitude
- Surface_Map_Surface_type_index
- Time_and_Position_Time_of_observation
- Unfiltered_Radiiances_CERES_LW_radiance_upwards
- Unfiltered_Radiiances_CERES_SW_radiance_upwards
- Viewing_Angles_CERES_solar_zenith_at_surface
- Viewing_Angles_CERES_viewing_zenith_at_surface
- Viewing_Angles_CERES_relative_azimuth_at_surface

Target dimensions

Reference Variables
- Clear_Footprint_Area
- Clear_area_percent_coverage_at_subpixel_resolution
- MIIC_standard_latitude
- MIIC_standard_longitude
- Surface_Map_Surface_type_index
- Time_and_Position_Time_of_observation
- Unfiltered_Radiiances_CERES_LW_radiance_upwards
- Unfiltered_Radiiances_CERES_SW_radiance_upwards
- Viewing_Angles_CERES_solar_zenith_at_surface
- Viewing_Angles_CERES_viewing_zenith_at_surface
- Viewing_Angles_CERES_relative_azimuth_at_surface

Reference dimensions

Advanced Options

Save Plan
Filter merged 1° x 1° grid cells on server:

\[\Delta r_{az} \leq 5^\circ, \]
\[\Delta v_{za} \leq 5^\circ, \]
\[\text{count} > 7, \]
\[\sigma_{SW/\overline{SW}} < .25 \]
MIIC Data Analysis Visualization

![Graph showing data analysis](image)

SW_fit2
2D Histogram: result/SW_fit2

<table>
<thead>
<tr>
<th>LW_radianc_upwards_count</th>
<th>CER_SSF_NPP-FMS-VIIRS_Unfiltered_Radiances_CERES_LW_radianc_upwards</th>
<th>CER_SSF_NPP-FMS-VIIRS_Unfiltered_Radiances_CERES_SW_radianc_upwards</th>
<th>CER_SSF_NPP-FMS-VIIRS_Unfiltered_Radiances_CERES_SW_radianc_upwards_count</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.508541273764283</td>
<td>143.333371066437784</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2.36848062195875</td>
<td>130.43747876468858</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>1.5285947567034823</td>
<td>145.2037542504866</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>1.0077036164021747</td>
<td>165.11229302479935</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>1.4276253262931312</td>
<td>162.6365266712564</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>0.0060710649147696</td>
<td>109.28650022273222</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1.2464292271077645</td>
<td>179.63932406117196</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Count: 16178, X mean: 110.141294, X std dev: 46.348057, Y mean: 0.011310, Y std dev: 0.038445
Working w/ CERES Cal-Val Team to Validate MIIC
(NPP FM5 vs. Aqua FM3 Inter-comparison)

<table>
<thead>
<tr>
<th>Date</th>
<th>IC Events</th>
<th>SW Relative Difference All-Sky [%]</th>
<th>SW Relative Difference Overcast [%]</th>
<th>LW Relative Difference All-Sky [%]</th>
<th>LW Relative Difference Overcast [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb. 1, 2012 – April 30, 2013 (15 mos.)</td>
<td>127</td>
<td>2.97</td>
<td>1.34</td>
<td>-2.01</td>
<td>-2.43</td>
</tr>
<tr>
<td>May 1, 2013 – July 31, 2014 (15 mos.)</td>
<td>123</td>
<td>1.74</td>
<td>1.13</td>
<td>-1.61</td>
<td>-2.21</td>
</tr>
<tr>
<td>Aug. 1, 2014 – Oct. 31, 2015 (15 mos.)</td>
<td>120</td>
<td>0.98</td>
<td>0.77</td>
<td>-1.10</td>
<td>-1.76</td>
</tr>
<tr>
<td>Nov. 1, 2015 – July 31, 2016 (9 mos.)</td>
<td>72</td>
<td>2.41</td>
<td>1.46</td>
<td>-1.80</td>
<td>-2.29</td>
</tr>
</tbody>
</table>

Relative Difference: (FM5-FM3)/FM5

SW Difference Monthly Trend: FM5-FM3

SW diff trend
1D Profile: result/SW_diff

CERSSF_NPP-FM5-VIIRS:Time_and_Position_Time_of_observation (UTC time)
CPF IC Data System Issues and Challenges

- Work with science working groups for requirements
 - ATBDs - define algorithms to implement
 - Data Product Catalog – define data products to produce
- DM software effort – run IC science jobs (PGEs) -> framework
- Select file format (HDF5, netCDF4)
- Define Interfaces
 - Ingest and Archive interface to be defined by DAAC
 - IC Command interface to be defined by LASP
 - Controller interface to science jobs (PGEs) via Univa Grid Engine
- Determine how to best leverage the MIIC system
 - Currently access CERES L2 data from ASDC DPO
 - Deploy MIIC OPeNDAP server at LAADS to access VIIRS data (TBD)
- Plan Build 1
- Plan CPF Data Management Workshop w/ LASP (Feb., ’17 TBC)
- Prepare for SRR