What can we learn about an infrared
CDS with a monochromatic, uniform
souce?

John Dykema, Jim Anderson
School of Engineering and Applied Sciences
Mark Witinski
Eos Photonics
Monochromatic sources

ILS/spectral calibration

Blackbody emissivity

Dykema et al: CLARREO SDT, Hampton, VA, October 2014
Quantum Cascade Lasers

Harvard housing with tunable collimation

Sealed housing with permanently aligned optic

Dykema et al: CLARREO SDT, Hampton, VA, October 2014
QCL intrinsic linewidth

1982: 114 MHz = 0.0038 cm$^{-1}$

2010: 5-100 kHz = 2×10$^{-7}$ to 3×10$^{-6}$ cm$^{-1}$
QCL linewidth

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (Wavelength)</th>
<th>Value (Frequency, as Wavenumber)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{d\lambda}{dT}$ (CW tuning rate, Temperature)</td>
<td>0.6 nm K$^{-1}$</td>
<td>6.7×10$^{-2}$ cm$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>$\frac{d\lambda}{dI}$ (CW tuning rate, Temperature)</td>
<td>30 nm A$^{-1}$</td>
<td>3.3 cm$^{-1}$ A$^{-1}$</td>
</tr>
</tbody>
</table>

Dykema et al: CLARREO SDT, Hampton, VA, October 2014
QCL requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature (T)</td>
<td>$14^\circ C < T < 15^\circ C$</td>
</tr>
<tr>
<td>Temperature Stability</td>
<td>0.25°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Current (I)</td>
<td>$0.4 \text{ A} < I < 0.6 \text{ A}$</td>
</tr>
<tr>
<td>Supply Voltage (V)</td>
<td>$8.4 \text{ V} < V < 10.0 \text{ V}$</td>
</tr>
<tr>
<td>Current Noise</td>
<td>$<20 \text{ mA}$</td>
</tr>
</tbody>
</table>

Dykema et al. CLARREO SDT, Hampton, VA, October 2014
Bibliography

• Tilt/shear

• Deconvolution

• Metrics for spectral calibration

• Speckle
Determinants of ILS for FTS

Dykema et al: CLARREO SDT, Hampton, VA, October 2014
Spectral, position domains

![Graphs showing spectral and position domains]

Dykema et al: CLARREO SDT, Hampton, VA, October 2014
Fitting Methods

• Estimate parameters for ILS model in spectral space
 – ILS model: circular, uniformly illuminated, off-axis detectors
 – Can add tilt, shear, sampling errors

• Deconvolution method in position space
 – After Bernardo & Griffith (2005)
 – Derived for narrow absorption feature
 – More straightforward with monochromatic source
Gaussian QCL profile

Using standard ILS model for circular, off-axis, uniformly illuminated detectors

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCL wavelength</td>
<td>1000.4 cm(^{-1})</td>
</tr>
<tr>
<td>FOV size</td>
<td>25 mrad</td>
</tr>
<tr>
<td>FOV alignment</td>
<td>10 mrad off-axis</td>
</tr>
</tbody>
</table>
Fitting performance: spectral space

Dykema et al: CLARREO SDT, Hampton, VA, October 2014
Fitting performance: position space
With additional demodulation
Radiance difference

![Graph showing radiometric error vs. demodulation coefficient]

Dykema et al: CLARREO SDT, Hampton, VA, October 2014
Altering ILS to test fit procedure

Dykema et al: CLARREO SDT, Hampton, VA, October 2014
Requirements derived from ILS fit

SNR requirement:
- Detector noise
- Permissible integration time
→ Sets QCL power requirement

Impacts:
- Thermal
- Electrical requirement

Linewidth requirement:
- Current noise
- Temperature noise
→ Sets QCL control requirements

Impacts:
- Thermal design specifications
- Electrical design

0.05 cm\(^{-1}\) requires thermal, electrical noise not to exceed 0.25 K, 1.3 mA

Dykema et al: CLARREO SDT, Hampton, VA, October 2014
On-orbit Test/Validation (OT/V) Modules

Viewing configuration providing immunity to polarization effects.

Heated Halo

On-Orbit Absolute Radiance Standard

(Used in combination with space view for instrument calibration)

On-Orbit Spectral Response Module

(Measures instrument line shape)

Ambient Blackbody

(Used in combination with space view for instrument calibration)

QCL Laser

(Used for blackbody reflectivity and Spectral Response Module)

Dykema et al: CLARREO SDT, Hampton, VA, October 2014
Emissivity measurement concept

- Laser reflected off-axis from scene select mirror into blackbody
- Requires power normalization based on blackbody temperature

Dykema et al: CLARREO SDT, Hampton, VA, October 2014
QCL power measurement

Blackbody temperature rise due to QCL absorption

Power computed from known blackbody thermal capacity

Dykema et al: CLARREO SDT, Hampton, VA, October 2014
OCEM (1)

Cross-beam

\[\delta = 6 \pm 2 \text{ mm} \]

Along-beam

\[\theta = 14 \pm 2^\circ \]

38 mm
OCEM (2)

Dykema et al: CLARREO SDT, Hampton, VA, October 2014
Concluding/future work

• Apply to measured spectra with different optical settings
• Combine spectral sampling and ILS analysis into combined framework
• Derive spectral characteristics for ILS misfit
• Utilize spectral characteristics in fingerprinting studies