PROGRESS TOWARD A COMBINED GPSRO & IR TEMPERATURE & RADIANCE DATASET

Robert Knuteson, Dan DeSlover, Dave Tobin, and Hank Revercomb, Michelle Feltz*, Jacola Roman*

Uni. of Wisconsin-Madison
Space Science and Engineering Center
*Department of Atmospheric and Oceanic Sciences - Graduate Program

CLARREO SDT Meeting, Greenbelt, MD
7 January 2014
OUTLINE

• CLARREO climate benchmark concept
• Historical upper air observations (PAST)
• Recent operational satellite record (PRESENT)
• Future climate expectations (FUTURE)
• Conclusions
Proposed CLARREO Payload

- GNSS-RO
 - Receiver
 - POD Antenna
 - Ram-Wake RO Antennas
- IR Suite
 - Mid/Far-IR FTS
 - Calibration/Verification System
- Reflected Solar Suite
 - Blue Spectrometer
 - Red/NIR Spectrometer

Contributors:
- NASA Langley Research Center
- U. Colorado
- NASA GSFC
- Uni. of Wisconsin/Harvard Uni.
- NASA JPL
The CLARREO Benchmark Concept

• CLARREO is to establish “benchmark” measurements having *independent SI* traceability paths **ON-ORBIT** from Radio Occultation, spectrally resolved **InfraRed**, and spectrally resolved **ShortWave** observations (Time standard, Temperature standard, Solar/Lunar standards).

• Independent measurements are considered essential for making **irrefutable claims** about atmospheric trends.

• One of the objectives of the UW SDT project was to use existing observations to create a prototype benchmark dataset as a proxy for the future CLARREO mission. Our emphasis was on the hyperspectral IR and GPS RO data collected over the past decade.
Controversy surrounds both the in-situ and remote observations due to inconsistent sensor calibrations.

Dashed line indicates upper limit of radiosonde data (30 mb).

Seidel et al. WIREs Clim Change 2011 vol 2 pp592–616 DOI: 10.1002/wcc.125
Heritage Radiosonde Trends

Stratospheric temperature trends: our evolving understanding

Dian J. Seidel,¹* Nathan P. Gillett,² John R. Lanzante,³ Keith P. Shine⁴ and Peter W. Thorne⁵

Heritage Satellite Sounder Trends

Stratospheric temperature trends: our evolving understanding
Dian J. Seidel,¹* Nathan P. Gillett,² John R. Lanzante,³ Keith P. Shine⁴ and Peter W. Thorne⁵

- 30 year SSU lower strat. satellite record: seems to confirm radiosonde trend in Stratosphere but has major analysis uncertainties.
Recent GPS RO and Advanced IR Sounder Trends

COSMIC GPS RO

AIRS IR Sounder

COSMIC-I: ~1,000 vertical Temperature profiles per day
IR Sounder: ~324,000 vertical Temperature profiles per day
GPS RO Tropical Temperature Trends (Steiner et al. 2011)

- Predicted GCM stratospheric trends at about -0.5 K/decade
- Steiner et al. analysis is 10 times larger (-5 K/decade)
- Is this result credible? GPS/MET 1997 data seems inconsistent with Seidel et al.
- What trend do we see in IR radiance? What IR trend should we see?
Heritage IR Sounders

1978 - current

Spectrally Resolved Radiances can provide High Absolute Accuracy with trace-ability to SI standards.
Spectral Coverage and Resolution Comparison

AIRS: 2002-

IASI: 2006-

CrIS: 2011-

CrIS: 2011-
Full Resolution

L1B: > 1200 Resolving Power
9 FOV/50km square

L1C: ±2 cm OPD
Gaussian apodized
4 FOV/50km square

±0.8, 0.4, 0.2 cm
OPD unapodized
9 FOV/50km square

±0.8 cm OPD
unapodized
9 FOV/50 km square

from LBLRTM for US Standard Atmosphere
This old result for the five year period 2003-2007 shows a tropical BT trend of ZERO but with a large statistical uncertainty.
AIRS B.T. DECADAL TRENDS: 2003-2012

Tropospheric IR trends in radiance temperature are dominated by El Nino/La Nina cycle (5 to 7 years)
UW IR/GPSRO Matchup Dataset

See Michele’s paper for details on matchup methodology:

AIRS and COSMIC L2 Matchup

6% of the COSMIC profiles on this day are within 1 hour of a coincident AIRS observation. Matchups are possible with any operational satellite platform, AQUA, METOP-A & B, Suomi-NPP, and METOP-C, J1, …
For L2 profile comparison the 3-D geometry of the RO profile is accounted for by finding the intersection of the COSMIC “ribbon” within the 3-D data cube of AIRS Tair retrievals.
GPS RO Profile intersection with IR retrieval fields

Closest profile 100 hPa AIRS
Circular Average AIRS
Raypath Average AIRS

Perigee Point
GPS RO Profile intersection with IR retrieval levels

- The black square is the closest IR profile to the COSMIC at 100 mb.

- The pink circle has radius of 150 km centered at the closest profile.

- The ray path IR soundings (red dots) account for horizontal gradients.
• AIRS mean bias “error” shows vertical structure.
• “Natural Variability” estimates are very consistent.
• Matchup dataset Inter-annual variability of Temperature bias is small (< 0.1K)
COSMIC/AIRS Matchup Dataset: July 2011
COSMIC profiles for July 2011 at latitudes > 80 N and < 80 S. Note the smooth banded structure except for the discontinuity at the boundary between the troposphere and stratosphere.
Matching AIRS profiles for July 2011 at latitudes > 80 N and < 80 S. Note that all of the Antarctic July profiles have a systematic vertical oscillation which is an obvious artifact when compared to COSMIC.
The difference of each matched profiles is shown overlaid with the mean bias of both the Arctic (solid) and Antarctic (dashed). The vertical oscillation in the Antarctic AIR S profile is prominent.
The corresponding nearest nadir AIRS L1 observed radiance temperature spectra appear to be perfectly normal. Use these spectra to obtain higher fidelity agreement with COSMIC profiles!
“Spectrally resolved” infrared spectra have demonstrated much higher absolute accuracy than earlier filter radiometer IR sounders, e.g. HIRS.

AIRS brightness temperature accuracy is estimated to be about 0.2 K (1-sigma) or six times worse than CLARREO.

Use AIRS to evaluate the CLARREO benchmark concept and to begin the IR climate record.
One year of the GPSRO/IR matchup dataset are plotted for Antarctica. Note the coldest Antarctic strat temps are in July.
With the UW matchup dataset we can do a point by point comparison to quantify the interpretation of the GPS RO and IR radiances.
COSMIC profiles for Antarctica during Jan-Dec 2011 are matched with AIRS spectra. Each COSMIC dry temperature profile is weighted using calculated dBT/dT profile for a single AIRS channel (667.0 cm⁻¹) selected to peak in the lower stratosphere.

The fit over all scene temperatures is within 2% (correlation of 0.98).
AIRS vs GPS RO where the RO profile is weighted by the AIRS vertical sensitivity (weighting function). Shows good agreement.
Co-located IR BT and weighted COSMIC temperatures can be used in PDF analyses to confirm distribution shifts seen in the individual AIRS or COSMIC datasets or predicted by GCMs.
What IR radiance trends should we expect in a changing climate?

What can we learn about future temperature trends and radiance trends from Dan Feldman’s CLARREO IR OSSE?
IPCC AR4 A2 Scenario: Stratospheric Temperature Trend 2000 - 2100

Arctic (80N - 90N)

<table>
<thead>
<tr>
<th>Trend</th>
<th>NaturalVar</th>
<th>AR[1]</th>
<th>Trend/NatVar</th>
<th>TTD (ideal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.053 K/yr = -0.53 K/decade</td>
<td>0.40 K</td>
<td>-0.18</td>
<td>7.5</td>
<td>8.5 yr</td>
</tr>
</tbody>
</table>

Antarctic (80S – 90S)

<table>
<thead>
<tr>
<th>Trend</th>
<th>NaturalVar</th>
<th>AR[1]</th>
<th>Trend/NatVar</th>
<th>TTD (ideal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.044 K/yr = -0.44 K/decade</td>
<td>1.4 K</td>
<td>-0.005</td>
<td>31.8</td>
<td>22.2 yr</td>
</tr>
</tbody>
</table>

Graphs:

Arctic 80N - 90N:
- **Equation:** $y = -0.053x - 39$
- **CCSM3**
- **July**

Antarctic 80S - 90S:
- **Equation:** $y = -0.044x - 100$
- **CCSM3**
- **July**
Radiance trends from the CLARREO IR OSSE (2000-2099)

OSSE Radiance trend in tropical stratosphere is nearly zero (-0.006K/yr) which is 10 times smaller than the temperature trend!
Radiance trends from the CLARREO IR OSSE (July 2000-2099)

Data courtesy of D. Feldman

OSSE Radiance trend in tropical stratosphere is nearly zero (-0.006K/yr) which is 10 times smaller than the temperature trend.

\[y = -0.00669 \times + 214 \]
Note the warmest lower stratospheric temperatures in July are in the Arctic and the coldest in the Antarctic.
• CCSM3 A2 scenario (see D. Feldman for details)
• The stratospheric temperature lapse rate is highest in the tropics.
Carbon Dioxide Mixing Ratio: A2 Scenario

- CO2 change in CCSM3 A2 scenario (see D. Feldman for details)
- CO2 more than doubles from less than 400 to more than 800 ppmv.

In CCSM3 and in the IR OSSE a constant global CO2 mixing ratio was used for each time step with the values shown here.

Current date: 400 ppmv
100-year change in zonal temperature (July 2099 – July 2000)

- Result of CCSM3 A2 scenario model run with approx. doubling of CO2.
- Tropospheric warming and stratospheric cooling (+- 0.5K/decade)
Sensitivity of IR brightness temperature to CO2 change

The tropical profile has a larger stratospheric IR radiance change for a given CO2 increase because the lapse rate is larger.
Note CO2 sources (red) and sinks (blue) for July 2010
Carbon Tracker CO2 at 20 hPa

July 2010 CO2 (micromole/mole) @ 18.8 hPa

Note zonal banded structure in the stratosphere.
Vertical and latitude variations of CO2 are large enough that they should be included in the calculation of TOA radiances and weighting functions.
CONCLUSIONS

1. Zonal analysis of UTLS temperature is already well underway in the GPS RO community. Results are preliminary but encouraging as the record will grow with time over the next decades.

2. Zonal analysis of TOA observed radiances is also underway in the Sounder community. Results are preliminary but also encouraging as that record will grow over the next decades.

3. The UW GPSRO/IR geo-located matchup subset allows for a quantitative assessment of the consistency between these two independent SI traceable datasets.

4. The CLARREO IR OSSE illustrates the need to distinguish between direct greenhouse gas radiance effects and TOA radiance changes due to atmospheric temperature by inclusion of CO2 observations, e.g. CarbonTracker, in the interpretation of IR radiance trends.