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CLARREO IR Accuracy

Radiance Accuracy: <0.1 K 2-sigma brightness T

for combined measurement and sampling uncertainty
(each <0.1 K 3-sigma) for annual averages of large

regions (to approach goal of resolving a climate change

signal in the decadal time frame)
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On-Orbit Absolute Radiance Standard

allowing calibration testing throughout mission
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Topics: CLARREO Measurement Science

 Background on IR Accuracy: Calibration and

Validation of current sounders supports
0.1 K 3-sigma being achievable for CLARREO

e CLARREO Absolute Radiance Interferometer
(ARI) Radiometric Calibration Accuracy

e CLARREO On-orbit Absolute Radiance
Standard (OARS) Accuracy
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Current System Capabillities

« New High Resolution IR Sounders: AIRS, IASI, CriS...
— Tremendous advance in information content & accuracy

— Huge advance for climate process studies, offering
« High vertical resolution T and WV profiling
e Trace gas distributions
* Cloud and surface properties

— Provide a solid foundation for CLARREO IR feasibility
— But, not optimized for unequivocal decadal trending

» Biased diurnal sampling
* Inconsistent and incomplete spectral coverage among platforms

« Sl traceability post-launch limited to aircraft inter-comparisons
(sounder-to-sounder comparisons useful, but do not have direct,

v,

timely connections to International Standards)
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CriS FM1 In-flight Radiometric Uncertainty:

versus scene temperature for all FOVs for “mid-band spectral channels

Generally < 0.2 K 3-sigma for all scene temperatures
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Non-linearity causing prominent FOV dependence (color coded)
will be reduced significantly by in-flight FOV inter-comparisons



Scanning HIS Aircraft Instrument:
Inter-comparisons connect high res. sensor calibrations
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S-HIS Absolute Radiometric Uncertainty

for typical Earth scene spectrum

**Formal 3-sigma absolute uncertainties, similar to that
detailed for AERI in Best et al. CALCON 2003
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Example S-HIS Validation of AIRS
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Topics: CLARREO Measurement Science

 Background on IR Accuracy: Calibration and
Validation of current sounders supports
0.1 K 3-sigma being achievable for CLARREO

e CLARREO Absolute Radiance Interferometer
(ARI) Radiometric Calibration Accuracy

e CLARREO On-orbit Absolute Radiance
Standard (OARS) Accuracy
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NASA IIP

Basic Radiometric Calibration Established using Views
of Ambient Blackbody Reference and Space

Calibration

Space View On-Orbit Spectral )

. Response Module <

(Measures instrument
line shape)

A 4

Spectral line shape

Heated Halo
from QC Laser source

-«
e
On-Orbit Absolute

Radiance Standard

(Includes Multiple Phase
Change Celis for absolute

‘:ﬂ-mh

Pulse-tube
detector cooler

Ambient (used in corglination
with spaceg¥iew for

Blackbody jnstrumg

calibration)

temperature calibration and
Heated Halo for spectral
reflectance measurement )

(used for blackbody
reflectivity and Spectral
Response Module)

Viewing configuration providing immunity to polarization effects.

Lack of requirement for cross-track coverage
and high noise performance allows calibration
biases to be minimized

High Performance FTS 15



UW Absolute Radiance Inter-
ferometer (ARI) Test Bed-1
based on ABB FTS -

ABB Bomem Interfero_méter = “
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21 Jan 2011




CLARREO Candidate Detector Cooler

NGST Pulse Tube Microcoole
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Calibration: Blackbody Contributors

CLARREO ARI Calibration Uncertainty 800 cm™
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295 + 0.047 K 03 010 .
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Blackbody Effective Temperature

Temperature Uncertainty 3 sigma error [K]

RSS [K]

Temperature Calibration Standard 0.005
(Thermometrics SP60 Probe with Hart Scientific 2560 Thermistor Module)
0.005
Blackbody Readout Electronics Uncertainty
|Readout Electronics Uncertainty (at delivery) | 0.005
0.005
Blackbody Thermistor Temperature Transfer Uncertainty
Gradient Between Temperature Standard and Cavity Thermistors 0.010
Calibration Fitting Equation Residual Error 0.001
0.010
Cavity Temperature Uniformity Uncertainty (based on GIFTS)
Cavity to Thermistor Gradient Uncertainty 0.025
Thermistor Wire Heat Leak Temperature Bias Uncertainty 0.008
Paint Gradient 0.018
0.032
Long-term Stability (assuming transfer from OARS)
Blackbody Thermistor 0.010
Blackbody Controller Readout Electronics
0.010
Effective Radiometric Temperature Weighting Factor Uncertainty
|Monte Carlo Ray Trace Model Uncertainty in Determining Teff | 0.030

(1/3 of total max expected gradient)

0.030

0.047

»Lab Cal Standard

»Transfer to cavity
»T Sensor to
Paint Surface

»Uncertainty of
OARS transfer

»Effect of surface
T gradients
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Calibration: Wavenumber Dependence

0.20

CLARREO Calibration Uncertainty from Blackbody Radiance Uncertainty
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Non-linearity

e Keep small by design: Pyroelectric and SW semiconductor
detectors (InSb or PV MCT) are extemely linear for earth
scenes

e Characterization: (thermal vacuum testing and on-orbit)

— (1) viewing accurate blackbody sources over a wide range of
temperatures,

— (2) using out-of-band harmonic signatures for the PV HgCdTe
detectors as was demonstrated to be very effective during thermal
vacuum testing of CrlS (originally demonstrated by UW for PC HgCdTe
detectors on the AERI ground-based and Scanning HIS and NAST-I
aircraft instruments), and

— (3) spectral comparisons in the overlap region with the FAR IR
detectors, which are known to have zero effective non-linearity for
the dynamic range of ARl observations (Theochaourous App. Opt. 47
(21) p3731 2008).
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Calibration: Non-linearity

Parameter = 3-sigma

Blackbody T:
295 + 0.047 K

Background T:
290 + 5K

Emissivity:
0.999 + 0.0006

Non-Linearity <0.03%

Brightness T Error [K 3-sigma]

-0.10

CLARREO ARI Calibration Uncertainty 800 cm™
0.20

190 210 230 250 270 290 310

Scene Temperature [K]

\—.— dTict =¢— dEict —=— dThict —— dNL == RSS \

(Non-linearity = maximum departure from linearity at half of the calibration blackbody radiance,
expressed as a percent of the calibration blackbody radiance)
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Other Important Factors

 Polarization

— Scene selection mirror is used at 45° for all sources and is gold plated to assure that the
induced polarization is very small (polarization at 45° degrees is less than about 0.5% for gold
with no over-coating)

— Itis possible to arrange all calibration views to have the same polarization sensitivity as the
earth view (with no cross-track scanning, all can be placed at +90° or 180° from the earth

view)
— A second space view at a significantly different angle will be used to demonstrate that the
polarization-null design is maintained on-orbit

e Stray Radiation

— It is expected that calibration uncertainty from stray radiation can be made negligible by
careful optical design, control and placement of stops, selection of low-scatter optics,
and by matched aperture viewing to earth and calibration sources

— Stray radiation will also be tested on the ground and in orbit using heated viewing apertures

e Thermal Stability

— The effects of thermal changes between calibrations will be controlled to negligible levels
using frequent calibration viewing and by effectively interpolating calibration view data and

housekeeping temperature data to the times of each earth view
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Topics: CLARREO Measurement Science

 Background on IR Accuracy: Calibration and

Validation of current sounders supports
0.1 K 3-sigma being achievable for CLARREO

e CLARREO Absolute Radiance Interferometer
(ARI) Radiometric Calibration Accuracy

e CLARREO On-orbit Absolute Radiance
Standard (OARS) Accuracy




Breadboard 2: Flight-like Configuration

3 cm aperture Sources

45° Gold Scene Mirror
selects source

OARS
with
Halo

OARS: On-orbit Absolute
Radiance Standard
OSRM: On-orbit Spectral

@'\ Response Module [
S E c UW & Harvard NASA IIP Activities in Support of CLARREO &
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New concept for on-orbit phase change temperature

calibration: Anatomy of a Melt Sighature

No melt
material
present

melt plateau

Temperature—

/ When Ga melt material is present, the
/ added power goes into changing the phase
to liquid - no cavity temperature rise.

Cavity held at
constant

Constant APower
temperature

Applied

Harvard
University

Hhs

UW & Harvard NASA IIP Activities in Support of CLARREO
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Blackbody
Cavity

(aft view)

SSEC GIFTS-type Cavity

(configured for melt signature tests)
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Gallium Melt in Blackbody

Signatures in Blackbody
demonstrate better than iSmKaccurac

Mercury Melt in Blackbody

-

A

/ ——exp app
exp dep

29 875 |
- / ‘
%)
/ \
‘gzg.??s 7 |
5
= / Water Melt in Blackbody
29725 0075
/
0450 e
29 675 _
28000 30000 32000 34000 | Gios : <
Time Elapsed (s ¢ v
g 7
fLEy ra
Melt g y
= Approach Exponential "];.,;ﬁ //
D.eparture Equnential 58750
Linear Ramp Fit o '
DS — -38.775
a0 moooo oo T PO w|
%-33 800
o« ué'as,szs
Miniature Phase Change Cells BHE
-38.850
Integrated Into Blackbody /
and Signatures Obtained R

lin fit
Hg Melt

41000 43000 45000 47000 49000
Time Elapsed (sec)

28



Conducted Full Accelerated Life Test For Ga, H20, and

Hg Packaged in Welded Housings

. 900 fu" Cycles (~-80 to +60 °C) Full Accelerated Life Temperature Profile
72h 72h 72h 72h
« 12 days at +80 °C ' i : :

225 225
cycles cycles

Temperatrue [C]

Melt Signature
Tests

Melt Slgnature 100 200 300 400 S00 600 700 800
TeStS Time [hours]

Rapid Housing

Analysis
SEM/EDS

Full-Temperature At Elevated Melt Signature

Cycling Temperature e

Melt Analysis
TXRF

Harvard

@ University
s
SEC
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Uncertainty of On-orbit Absolute

Radiance Standard (OARS)

CLARREO On-orbit Validation Uncertainty 800 cm™

0.20

\%%

-0.10

Parameter = 3-sigma

OARS T:
OARS T + 0.046 K

Background T;:
290 + 5K

OARS Emissivity:
0.999 + 0.0006*

Brightness T Error [K 3-sigma]

190 210 230 250 270 290 310

* Gero et al.
OARS Temperature (K)
‘—-— dToars = dEoars —s— dThoars == RSS ‘

Note the strong effects of even very small emissivity uncertainty
for cold atmospheric temperatures
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OARS Effective Temperature

Temperature Uncertainty gma erro R
Temperature Calibration Standard (Ga, H20, and Hg melt signatures) 0.010 > P h ase Ch an g e Cel |
(melt signature temperature uncertainty)

oo  Melt Signature

Blackbody Readout Electronics Uncertainty

|(Inc|uded in phase change calibration) | 0.000
0.000
Blackbody Thermistor Temperature Transfer Uncertainty
Gradient Between Temperature Standard and Cavity Thermistors 0.002 1 _
Calibration Fitting Equation Residual Error Between Calibration Temps. 0.010 > Stel n h art Hart

ocoi0r - Interpolation

Cavity Temperature Uniformity Uncertainty (pased on GIFTS)

Cavity to Thermistor Gradient Uncertainty 0.025
Thermistor Wire Heat Leak Temperature Bias Uncertainty 0.008 >T Sen S O r tO
Paint Gradient 0.018

ooz, Paint Surface

LOng-term Stablllty (eliminated using periodic melt signatures on-orbit)
Blackbody Thermistor
Blackbody Controller Readout Electronics

0.000 »Eliminated by
200 Periodic Melts

Effective Radiometric Temperature Weighting Factor Uncertainty
|Monte Carlo Ray Trace Model Uncertainty in Determining Teff | 0.030

(1/3 of total max expected gradient) 0.030 > Effect Of S u rface

oss T gradients
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OARS Radiance Uncertainty

compared to ARI Uncertainty

CLARREO Calibration (dashed) & On-orbit Validation (solid) Uncertainty

Parameter + 3-sigma >4 \ \

OARS T: < 0.30

OARS T £ 0.046 K =

{5

Background T: ' 020

290 £+ 5K %

OARS Emissivity: o 040

0.999 + 0.0006*

0.00 ‘ ‘ ‘
* Gero et al. 200 220 240 260 280 300 320
OARS Temperature (K)
| —+— 200 cm-1 —<— 800 cm-1 1600 cm-1 —=— 2000 —e— 2600 cm-1 |
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Cold Scene Temperature Test Approaches

* On-orbit testing to identify the source of ARI differences from
the OARS:

— The scene temperature and wavelength dependence of the emissivity is
uniqgue and will be identifiable from planned on-orbit tests of CLARREO.

— The approach is to identify the expected signature of an OARS emissivity
uncertainty from ARl — OARS radiance residuals, and to make a post-
launch adjustment to the assumed OARS emissivity.

— ARI-OARS residuals will then form a tight bound on any ARI properties
that might change in ways that could effect the calibration for cold

temperatures over the life of the mission.
* Flying two instruments to directly verify agreement would also
be very attractive for establishing confidence that the accuracy
requirement is being met.
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Summary

e Accuracy estimates for
Absolute Radiance Interferometer (ARI) sensors
and On-orbit Absolute Radiance Standard (OARS)
based on detailed uncertainty assessments
are essential elements of CLARREO science

e Existing validation approaches with aircraft,
ground-based, and spaceflight instruments are
important tools for establishing CLARREO
credibility
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