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SDT Tasks

1. Trend Detection in SCIAMACHY Spectral Radiances

Task Summary
Objective: Extract trends in TOA outgoing shortwave spectral radiance.  

Method: PCA, examining PC score time series, and SSA/MSSA for trend 
extraction.  

Data: SCIAMACHY shortwave spectral radiance; radiative transfer simulations 
of TOA outgoing spectral radiance. 

Models: PCA implemented through IDL/ENVI; SSA from published algorithms; 
MODTRAN. 

Expected outcomes:  Validation of trend detection methods using measured 
shortwave radiances and tested with modeled simulations with known 
forcings; improved quantification and refinement of CLARREO 
requirements. 



SDT Tasks

2. Intersection of Spectrally Decomposed Subspaces

Task Summary
Objective: Find intersection of eigenvector subspaces in measured and 

modeled radiance data sets. Use to separate the underlying physical 
variables that explain the variance in the measurements.  

Method: Numerical methods of determining the angles between the 
complementary linear subspaces. Look-up tables to match model input 
to variance as depicted by measurement eigenvectors.   

Data: SCIAMACHY shortwave spectral radiance; radiative transfer simulations 
of TOA outgoing spectral radiance from Langley and UC Berkeley groups. 

Models: PCA implemented through IDL/ENVI; MODTRAN; numerical model to 
derive angles between principle axes. 

Expected outcome:  Improved attribution techniques through identification 
of physical variables responsible for spectral variability; improved 
quantification and refinement of CLARREO requirements. 



Summary of Prior Studies

• Continuous near-full spectrum is required for shortwave 
climate benchmarking.
 Energy arguments: 50% absorption > 1400 nm

 Increased information content over discrete band sampling

• Approximately 0.5-1%/decade change in reflectance based on 
various climate change predictions.

• For both a full-global case and a subset single SCIA orbit, 99% 
of the variance is explained by 5-6 components.

• Spectral resolution makes little difference in distributed 
variance in SCIA spectra.
 Recommendation: 10 nm for cloud phase discrimination, surface 

characterization.

• Directional sampling:
 Little change in variance contribution between nadir and full-swath. 

 Nadir bias < inter-annual variability. 



Summary of Prior Studies

• Seasonal variability is evident, but PC order is conserved.

• Recommended spatial resolution based on cloud resolving 
arguments:
 Tradeoff between IPA and PP assumptions.

• Interpretation of physical causality:
 First component: clouds/water vapor; fourth: molecular scattering; 

fifth: vegetated surface albedo.

 PCA very effective in separating surface and atmospheric variability.

• Trend detection in PC time series.
 Arctic PC2 is ice albedo and follows trend with sea ice extent.



A new method for deriving spectral shortwave 
cloud absorption from aircraft …

Kindel et al., 2011



… that agrees well with modeled absorption

Model
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Contributions to Absorbed Irradiance In Cloud

Kindel, et al., 2011; Schmidt & Pilewskie, 2011



Retrieval Accuracy Improves With Added Spectral Coverage

Coddington , Pilewskie, Vukicevic ,2011
GEneralized Nonlinear Retrieval Analysis (GENRA; Vukicevic et al., 2010) 



Information Content supports the physical basis for 
retrievals of droplet effective radius 

Information Content for 
Effective Radius

Co-albedo of water 
multiplied by Transmission of main absorbing species 

(primarily water)

Information content increases at wavelengths where water absorbs.
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SCIAMACHY Global PCA

Roberts  and Pilewskie, 2011



SCIAMACHY Global PCA

Green peak and NIR edge

Roberts  and Pilewskie, 2011



Spatial distribution of component scores 
track global MODIS VI patterns  

Roberts  and Pilewskie, 2011



PC4: Molecular Scattering

Apr PC4

-4

0

PC4 follows a -4 power 
law in wavelength: 
Rayleigh’s scattering law.



Can the contributions from sea ice and clouds be separated in 
the top-of-atmosphere outgoing shortwave radiation?

Roberts  et al., 2011



Singular Spectrum Analysis tracks trends in sea ice extent 

Roberts  et al., 2011



Intersection of Spectrally Decomposed Subspaces

• Standardized PCs shows a close comparison between the SCIA 
data and OSSEs output

• Common practice to compare the structure of PCs that have 
not be standardized
 Unstandardized PCA results 

 Transformation of sets of PCs and measures of their similarity

 What does this method help us to understand about how the two data 
sets compare?

• What’s next?



Comparable spatial sampling

• Averaged SCIAMACHY radiances 
 Resulting in monthly averaged, spatially gridded, 15nm fwhm spectra

• Also spatially averaged and spectrally resampled OSSEs 
radiances over the same spatial grid and spectral resolution
 Only used locations present in SCIAMACHY data

• Spatial grid 4°(lat) x 6°(lon)

• Examples shown here are from October 2004 for both data 
sets



Quantitative Comparison of Subspaces

• Decompose the covariance matrix of the intersection of two 
subspaces (two sets of PCs)

• What do the results say about the similarity of subspaces?
 The eigenvalues of this decomposition gives measure of contribution 

of each pair of new vectors to the similarity between the two.

 The sum of these eigenvalues lies between 0 and # of dimensions 
included.  Measure of total subspace similarity.

 The new eigenvectors can be studied to understand the spectral 
nature of the similarity. 



Quantitative Comparison of Subspaces
A = Radiance Data A B = Radiance Data B

L= EigenvectorsA
S = LMTMLT 

Intersection

Decompose S = YA C YB

UB = MYBUA = LYA

C = cos(θ)
Correlations between 
each eigenvector in UA 

and UB.

YA YB

M= EigenvectorsB

YA and YB contain 
weightings representing 
the contribution of each 
PC to each shared 
dimension C – the correlations between 

the newly transformed 
eigenvectors

U, the original PCs projected 
onto the weightings vectors 
(YA and YB ), are the newly 
transformed eigenvectors.



OSSES SCIAMACHY

Unstandardized PCs

Nine eigenvectors from the principal component transformation of the 
measured SCIA radiance spectra (left) and OSSE MODTRAN spectra (right).



Unstandardized PCs



r = cos(θ) 

Quality of overlap in SCIA and OSSE  radiances measured by the
angle between subspaces.



Nine eigenvectors for the transformed databases.

Transformations of the Intersecting Data



What’s Next?

• Statistical significance of correlations

• Gives good quantitative measure of similarities, but is there a 
way to identify the differences?

• Comparisons over longer periods of time.

• How does the OSSEs variability change over the century?


