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Outline

• Summary of tasks proposed for the CLARREO SDT.

• Summary of OSSE data in hand.

• SW detection time analysis for a perfect observing system.

• Effect of measurement uncertainty on SW detection times.

• Pan-spectral development update.

• Conclusion and discussion.
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Proposed Tasks for the CLARREO SDT

• The Berkeley group has proposed to contribute the 

following to the CLARREO SDT:

– Utilization of simulated CLARREO data to estimate change 

detection time in SW reflectance spectra

– Production of pan-spectral (SW+IR) OSSE spectra.

– Interfacing different scenarios (varying forcings and feedbacks) 

of CCSM3 into the CLARREO OSSE framework.

– Production and analysis of spectra derived from different orbits.

– Development and implementation of tools to produce OSSE 

spectra based on CMIP5 database.
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Summary of simulations

• We have an operational Observing System Simulation 

Experiment (OSSE) framework as described in Feldman 

et al, JGR [2011].

• We have simulated SW reflectance spectra based on 

two CCSM3 integrations of 21st Century

– Spectra based on monthly-mean fields

– 1.4°x1.4° horizontal resolution

– 26 vertical levels

– Sun-synchronous orbit at 1:30 pm local equator-crossing time.

• We are in the final stages of testing the OSSE to 

produce SW + LW spectra.
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• We have OSSE data from forced (SRES A2) & 

unforced (AR4 constant concentration) scenarios.

• Forced scenario prescribes high GHG 

emissions with aerosols peaking at mid-

century.

• Unforced scenario prescribes no new 

emissions.

Forcing of Simulations

Forced

Unforced

Forced

Forced

Unforced



CCSM3 Changes in the Climate System Relative to 2000s 

from the A2 emissions scenario
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Δ Clear-sky broadband albedo
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Largest 

broadband trends 

are associated 

with changes in 

aerosols, snow, 

and sea ice.



Δ All-sky broadband albedo
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Differences between 

all-sky and clear-sky 

due to increase in 

stratus cover, 

movement of the 

ITCZ and increases 

in polar clouds



Time Series Analysis for Change Detection
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• We utilize the formulae from Weatherhead et al [1998] to 

estimate a secular change in a time series with natural 

variability.

• AR(1) noise process.

• Linear secular trend.

• Trend and noise assumed to be stationary.

• We calculate annual (flux- and/or radiance-based) and 

zonal-averages to produce time series of 100 data 

records each.



Time to detection for climate change
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Trends in albedo 

and reflectance are 

superimposed on 

natural variability.



Time to detection for climate change
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Trends in albedo 

and reflectance are 

superimposed on 

natural variability.

Time to detection = 

time to exceed 

95% of variability



Formula for Change Detection

• The time required to detect 

changes in an observation 

increases from:
– Natural variability

– Measurement uncertainty

– Uncertainty in noise and trend 

estimation from a short time series.
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Rapid and confident change detection
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• We are interested in knowing the 

record length required to declare 

confidently that a change has 

occurred.
– Analysis performed with a partial time 

series beginning with the first record.

– This condition is satisfied where:

– This approach can be problematic where:

e.g., clear-sky albedo time-series at low-

latitudes 

– Detection time is indeterminate where:

n* t( ) £ t

¶ wo

¶t
< 0

n* t( ) > t  " t



Δ Clear-sky broadband albedo: Time to detect
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These trends can 

be detected by a 

perfect observing 

system with high 

confidence in <10 

years at low 

latitudes and 15-

30 years at 

higher latitudes.

Largest 

broadband trends 

are associated 

with changes in 

aerosols, snow, 

and sea ice.



Δ All-sky albedo
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These trends can be 

detected by a perfect 

observing system 

with high confidence 

in 15-20 years at mid 

latitudes with high 

meridional variability.

Differences between 

all-sky and clear-sky 

due to increase in 

stratus cover, 

movement of the 

ITCZ and increases 

in polar clouds



Time Series and Change Detection with Spectral channels
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Change Detection Value Added From Spectra

• Spectral albedo or radiance add value to change detection where 

plots are NOT shaded white.
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All-Sky Reflectance vs Broadband AlbedoClear-Sky Reflectance vs Broadband Albedo



Change Detection with Measurement Uncertainty

• Measurement uncertainty increases 

change detection time

• Particularly under conditions where

measurement uncertainty may make 

change detection estimation 

indeterminate 
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Change Detection with Measurement Uncertainty

• Measurement uncertainty >0.002 leads to indeterminate change detection 

time for most clear-sky reflectance measurements.

• Measurement uncertainty >0.006 leads to indeterminate change detection for 

some all-sky reflectance measurements.
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Pan-spectral analysis
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• CLARREO’s SW reflectance + IR radiance spectra may be complementary.

• IR measurements are sensitive to H2O, lapse rate, Tsurf but less sensitive to low clouds.



• Clear-sky signals of aerosols, Tsurf increases, Tstrat decreases and water-vapor loading are 

easily detectible by pan-spectral measurements

• Signals from clouds are most apparent in the SW, though upper-trop cloud changes can be 

seen in the LW.

Preliminary Pan-Spectral Climate Change Signals: 2050s-

2000s
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SW Clear Reflectance DJF Change 2050-2000 LW Clear Radiance DJF Change 2050-2000SW All Reflectance DJF Change 2050-2000 LW All Radiance DJF Change 2050-2000ΔRλ



• Clear-sky signals of Tsurf increases, Tstrat decreases and water-vapor loading are easily 

detectible by pan-spectral measurements

• Signals from clouds are most apparent in the SW, though upper-trop cloud changes can be 

seen in the LW.

Preliminary Pan-Spectral Climate Change Signals: 

2090s-2000s
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LW Radiance DJF Change 2090-2000SW All Reflectance DJF Change 2090-2000 LW All Radiance DJF Change 2090-2000SW Clear Reflectance DJF Change 2090-2000 LW Clear Radiance DJF Change 2090-2000
ΔRλ



Conclusions
• Earth’s reflected solar spectrum will change 

due to anthropogenic global warming.

• Measurements of broadband albedo or spectral reflectance will detect 
this change on decadal time-scales.

– Spectral measurements generally detect change faster than broadband 
measurements.

– Measurement uncertainty can confound the change-detection algorithms 
and make detection indeterminate even on centennial time-scales.

• We have preliminary pan-spectral OSSE simulations that may be useful 
to the SDT, but they have not been analyzed.
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